

A Case Study in the Effect of Agricultural Legacies on Forest Change Dynamics

Ashley Block
Honors Research
Department of Biology
Ecology and Biodiversity
Advisor: Dr. Evans

Non-equilibrium Dynamics: What causes forests to change?

- Deer Overabundance
- Drought (Climate Change)
- Fire Suppression
- Timber Harvest
- Invasive pathogens
- Agricultural Land Use

Agricultural Abandonment

- Forest lands regenerating from previous agricultural sites represent as much as 80% of a landscape in some areas such as New England (Flinn and Vellend 2005).
- Concept of a "natural" landscape is slowly disappearing due to omnipresent anthropogenic influence (Christensen 1989).
- Agricultural Legacies: Lasting effects on the ecological community and the regeneration capacity of a forest due to alterations made to a landscape during an agricultural regime.

Study Site: The King Farm

Time Line:

- 1825: Evidence of a "plantation" on the land
- 1901: Land is sold and part is dedicated to raising hogs
- 1915: Hog farming continues; land is cleared for other agriculture
- 1930s 1946: Isaac King
 - continues farming and hogs
 - pasture, row crops, a house site, and family garden
- 1946: Family abandons farm
- 1960-62: Charles Cheston plants pine
- 1980s: Southern Pine Bark Beetle outbreak

Primary Forest

Factors affecting regeneration

Time since abandonment

Seed Bank
Long Range Dispersal
Short range dispersal
Soil Nutrients
Pine Planting
Persistent weeds
Deer

Overstory Similarity matrix										
	Forest 1	Forest 2	NoAg 3a	Agr 13b	Agr 14a	Agr 4a	Agr 6a	Agr 11a		
Forest 1	1									
Forest 2	0.543	1								
NoAg 3a	0.569	0.719	1							
Agr 13b	0.118	0.082	0.119	1						
Agr 14a	0.103	0.422	0.433	0.133	1					
Agr 4a	0.147	0.412	0.546	0.172	0.855	1				
Agr 6a	0.137	0.424	0.451	0.132	0.774	0.784	1			
Agr 11a	0.111	0.404	0.445	0.186	0.892	0.872	0.779	1		
	Forest 1	Forest 2	NoAg 3a	Agr 13b	Agr 14a	Agr 4a	Agr 6a	Agr 11a		

Understory Similarity matrix									
	Forest 1	Forest 2	NoAg 3a	Agr 13b	Agr 14a	Agr 4a	Agr 6a	Agr 11a	
Forest 1	1								
Forest 2	0.261	1							
NoAg 3a	0.953	0.213	1						
Agr 13b	0.851	0.416	0.867	1					
Agr 14a	0.09	0.75	0.086	0.448	1				
Agr 4a	0.093	0.547	0.083	0.299	0.625	1			
Agr 6a	0.055	0.345	0.052	0.227	0.461	0.266	1		
Agr 11a	0.055	0.284	0.044	0.312	0.566	0.293	0.569	1	
	Forest 1	Forest 2	NoAg 3a	Agr 13b	Agr 14a	Agr 4a	Agr 6a	Agr 11a	

Calcium* (ppm)

201

4.9

Therefore:

- Hypothesis is confirmed:
 - Legacies associated with agricultural disturbance are an important determinant of compositional change
 - Play an interacting role with other disturbances

Future research

Literature Cited:

- Aizen, Marcelo A. and William A. Patterson, III. 1990. Acorn Size and Geographical Range in the North American Oaks (Quercus L.). Journal of Biogeography 17(3):327-332.
- Christensen, Norman L. 1989. Landscape History and Ecological Change. Journal of Forest History 33(3):116-125.
- Clements, Frederic E. 1936. Nature and Structure of the Climax. Journal of Ecology 24(1):252-284).
- Côte, Steeve D., T. P. Rooney, J. Tremblay, C. Dussault, and D. M. Waller. 2004. Ecological Impacts of Deer Overabundance. Annual Review of Ecology, Evolution, and Systematics 34:113-147.
- Dupouey, J. L., E. Dambrine, J. D. Laffite, and C. Moares. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83(11):2978-2984.
- Flinn, Kathryn M., Mark Vellend. 2005. Recovery of forest plant communities in post-agricultural landscapes. Frontiers in Ecology and the Environment, 3(5):243-250.
- Flinn, Kathryn M., and P. L. Marks. 2007. Agricultural legacies in forest environments: Tree communities, soil properties, and light availability. Ecologicial Applications 17(2):452-463.
- Foster, D. R., T. Zebryk, P. Schoonmaker, and A. Lezburg. 1992. Post-settlement history of human land-use and vegetation dynamics of a *Tsuga Canadensis* (hemlock) woodlot in central New England. Journal of Ecology 80:773-786.
- Foster, David, F. Swanson, J. Aber, I. Burke, N. Brokaw, D. Tilman, and A. Knapp. 2003. The Importance of Land-Use Legacies to Ecology and Conservation. BioScience 53(1):77-88.
- Glitzenstein, J. S., C. D. Canham, M. J. McDonnell, and D. R. Streng. 1990. Effects of environment and land-use history on upland forests of the Cary Arboretum, Hudson Valley, New York. Bulletin of the Torrey Botanical Club 117(2):106-122.
- Katz, Daniel S. W., G. M. Lovett, C. D. Canham, C. M. O'Reilly. 2010. Legacies of land use history diminish over 22 years in a forest in southeaster New York. Journal of the Torrey Botanical Society 137(2-3):236-251.
- Koerner, W., J. L. Dupouey, E. Dambrine, and M. Benoit. 1997. Influences of past land use on vegetation and soils of present day forest in the Vosges mountains, France. Journal of Ecology 85:351-358.
- Kuhman, Timothy R., Scott M. Pearson, and Monica G. Turner. 2011. Agricultural land-use history increases nonnative plant invasion in a southern Appalachian forest a century after abandonment. Canadian Journal of Forest Research 41:920-929.
- Motzkin, Glenn, David Foster, Arthur Allen, Jonathan Harrod, and Richard Boone. 1996. Controlling Site to Evaluate History: Vegetation Patterns of a New England Sand Plain. Ecological Monographs 66:345-365.
- Vellend, Mark. 2004. Land-use history and plant perforemance in populations of *Trillium grandiflorum*. Biological Conservation 124(2):217-224.

Acknowledgements:

- Dr. Evans
- Kevin Hiers
- The Department of Biology at the University of the South
- Dr. Potter for photos
- King Farm Project Faculty: Dr. Willis, Dr. Sherwood, Dr. Pond, Dr. Jerry Smith
- All students that have been involved on the King Farm Project including Will Overton, Nathan Bourne, and others